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ABSTRACT
Factor analysis and deconvolution are commonly used tools
in analysis of time activity analysis of biological organs in
scintigraphic data. Typically, these are used independently
such that the output of the former is taken as an input to
the latter. Each method is thus unaware of the restric-
tions imposed by the other and fails to respect them. In
this paper, we propose a probabilistic model that integrates
convolution into the factor analysis model. We develop an
approximate Bayesian estimation of the model parameters
based on Variational Bayes approximation. The new vari-
ant of the factor analysis model is suitable for modeling
of a range of biological processes where convolution ker-
nels are known to have restricted shapes. Properties of the
new model are illustrated on analysis of data from dynamic
renal scintigraphy. The proposed model provides more re-
alistic estimates of the convolution kernels.
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1 Introduction

Analysis of a dynamic scintigraphy data is typically per-
formed in two steps. In the first step, image components
and their time activity curves are extracted, and the time
activity curves are analyzed for diagnostic information in
the second step. Quite often, models and assumptions used
in one step are different from those in the second step. For
example, in functional analysis of renal studies, the image
components and time activity curves may be extracted by
factor analysis [1] or regions-of-interest, while the diagnos-
tic information is processed by deconvolution [5]. Since
the assumptions of these two methods differ, proper com-
bination of these two steps must be supervised by an expert
who is capable of correcting the mismatch. This skill is dif-
ficult to transfer without extensive training. Our long term
objective is to build more advanced mathematical model
that will incorporate as much of the expert knowledge as
possible. As a step in this direction, we propose a model
that incorporates convolution parametrization of the factor
curves into the model of factor analysis.

Factor analysis is a classical statistical method that

has been used in analysis of medical image sequences in
scintigraphy [1], ultrasound [7] and PET [4]. A com-
mon problem of the factor analysis model is that the basic
unconstrained model allows for infinitely many solutions.
Further restrictions on the factors has to be imposed to ob-
tain physiologically meaningful solution. Typical restric-
tions are positivity of the curves [11]. However, positiv-
ity alone does not guarantee neither biological meaningful
curves, nor uniqueness of decomposition. Uniqueness is
assured only when all factor images contain at least one
pixel at which all other images have zero activity [12]. This
condition does not hold e.g. in renal scintigraphy, where
activity of the background tissue is present in all pixels.
Additional constraints are necessary to restrict the space
of possible solutions. One such extra constraint is spe-
cific shape of convolution kernels of the factor curves. This
knowledge is well known in the second step of the analysis
using deconvolution [5, 2].

Combination of these assumption in one model re-
sults in rather complex model without an analytical solu-
tion. The Variational Bayes methodology has been suc-
cessfully used for approximate solution of closely related
models of independent component analysis [8], variants of
factor analysis [10], and convolution models with unknown
kernels and input functions [9]. The Variational Bayes is
computationally less demanding than popular Monte Carlo
techniques. However, solution of the presented model is
significantly more demanding than solution of the previous
models.

2 Background

To illustrate relation of the variational Bayes solution to
previously known methods, we briefly review variational
factor analysis and deconvolution with monotonic kernels.

2.1 Variational Factor Analysis (FA)

The task is to analyze a sequence of n images obtained by
scintigraphic camera in time t = 1, . . . ,n. Every image con-
sists of p pixels. These are aggregated in a matrix of mea-
surement, D ∈Rp×n, which consists of p-dimensional vec-
tors in each column, one for each time of observation. We



assume that each image in the sequence is formed from r
factor images by linear combination, typically r < n� p.
Matrix A ∈ Rp×r is composed from the factor images, one
image in each column. Every factor image has its associ-
ated time-activity curve, x j = [x1, j, . . . ,xn, j], that are stored
as columns of time-activity matrix X ∈ Rn×r. Both matri-
ces A and X are unknown and we seek their estimates.

The model can be written in the following matrix
form

D =AX ′+E (1)

where E ∈ Rp×n is the matrix of noise. Matrix D is com-
posed of measurements of radioactive particles which are
known to have Poisson distribution. An appropriate covari-
ance matrix of errors E can be found using correspondence
analysis [3]:

f (D|A,X ,ω) = tND(AX ′,ω−1
Ωp⊗Ωn), (2)

Ωp = diag(D11,n), (3)
Ωn = diag(11,pD). (4)

Here, diag(.) of vector argument composes square diago-
nal matrix with diagonal elements from its argument, 1 is a
matrix of ones of dimensions given in its subscript, tN() de-
notes truncated normal density on positive support and⊗ is
the Kronecker product. Prior knowledge on the parameters
is chosen as follows [10]:

f (A|ϒ) = tNA
(
0p×r,Ωp⊗ϒ

−1) , (5)
ϒ = diag(v),v = [v1, . . . ,vr]

′,

f (v) =
r

∏
i=1

Gvi(αi,0,βi,0), (6)

f (X) = tNX (0n,r,Ωn⊗ Ir) , (7)
f (ω) = Gω (ϑ0,ρ0) , (8)

where Ip denotes the identity matrix of dimensions p× p,
ϒ ∈ Rr×r is diagonal matrix with hyper-parameters vi with
prior statistics α0,β0 ∈ Rr, and ϑ0,ρ0 ∈ R are scalar prior
parameters. G() denotes the Gamma distribution.

Truncation of (5) and (7) to positive values make this
model distinct from the model of principal component anal-
ysis. For non-truncated priors (5) and (7) the variational
algorithm converges to the solution given by the principal
component analysis [10].

Product of densities (2)–(8) defines the joint like-
lihood that is approximated by the Variational Bayes
method. The resulting approximate posterior marginals are
found in the form [10]:

f̃ (A|D,r) = tNA (µA,Ωp⊗ΣA) , (9)

f̃ (X |D,r) = tNX (µX ,Ωn⊗ΣX ) , (10)

f̃ (v|D,r) =
r

∏
i=1

Gvi (αi,βi) , (11)

f̃ (ω|D,r) = Gω (ϑ ,ρ) , (12)

with shaping parameters:

µA = ω̂ΩpDΩnX̂ΣA, ΣA =
(

ω̂X̂ ′ΩnX + ϒ̂

)−1
,

µX = ω̂ΩnD′ΩpÂΣX , ΣX =
(

ω̂Â′ΩpA+ Ir

)−1
,

α = α0 +
p
2

1r,1,

β = β0 +
1
2

diag
(

Â′ΩpA
)
,

ϑ = ϑ0 +
np
2
,

ρ = ρ0 +
1
2

tr
(

DD′− ÂX̂ ′D′−DX̂Â′
)
+

1
2

tr
(

Â′AX̂ ′X
)
.

Here, tr(.) denotes trace of its matrix argument.
The required moments are ϒ̂ = diag(α ◦β−1), where

◦ denotes the Hadamard product, ω̂ = ϑ/ρ and the mo-
ments of the truncated normal densities are computed with
neglected covariances using relations in Appendix A.

2.2 Deconvolution

Deconvolution of factor curves is a well established method
of curve analysis [6]. It is based on biologically-motivated
assumptions that the time-activity curves of organs arise
as convolution of the input activity (observed in the form
of the curve of the blood) and organ-specific kernels. The
shape of the kernels is expected to be formed by a constant
plateau followed by monotonic decrease to zero, see Fig-
ure 1.

Formally, a single time-activity curve of the f th or-
gan, x f , can be modeled as

xt, f =
t

∑
m=1

bt−m+1um, f (13)

where b is the input activity curve, and u f is the convo-
lution kernel. For known x f and b the convolution kernel
u f may be found by any deconvolution method. However,
for inaccurate values of x f and b, the result would not re-
spect physiological assumptions in Figure 1. Therefore, [5]
proposed to model the convolution kernel by a sum of non-
negative increments:

um, f =
n

∑
i=m

wi, f , wi, f ≥ 0. (14)

Deconvolution under this assumption provides more phys-
iologically meaningful results. However, the curves x f and
b still has to be known. We relax this restriction in the fol-
lowing Section.

3 Factor Analysis with Blind Deconvolution
(CFA)

In this chapter, we combine method from chapters 2.1 and
2.2. The likelihood function (2) as well as the prior densi-
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Figure 1. Illustration of the assumed shape of the convolution kernels.

ties (5), (6), (8) are modified by substitution

X = BCW, (15)

where B is a matrix composed of the blood vector b, and C
is an auxiliary function:

B =


b1 0 · · · 0

b2 b1
. . .

...
...

. . . . . . 0
bn · · · b2 b1

 , C =


1 1 · · · 1

0 1
. . .

...
...

. . . . . . 1
0 · · · 0 1

 .
Each b and W have additional constraints modeled in a
probabilistic way.

3.1 Model of the blood curve

Due to radioactive decay and physiological processes, the
time-activity curve of the blood is assumed to be non-
negative. Therefore, we define b as a sum of non-negative
increments:

bt =
n

∑
i=t

gi, gi ≥ 0. (16)

The unknown variable is then g with prior density

f (g|ψ) = tN(0n,ψ
−1In), (17)

f (ψ) = Gψ(ζ0,η0) (18)

where ψ is a hyper-parameter of the variance with scalar
prior parameters ζ0 and η0. The assumption of non-
negative elements of g is again modeled by a truncated
Gaussian (17). Validity of this assumption will be dis-
cussed in Section 5.

3.2 Model of impulse retention functions

Assumption on the convolution kernel U , Figure 1, trans-
forms the assumptions on W to two parts, Figure 2:

wi, f =

{
h f s f ≤ i≤ s f + l f ,

0 otherwise.
(19)

t ts f

h f

l f

Convolution kernel u f

⇐⇒

Differences of u f , w f

Figure 2. Parametrization of the convolution kernel via dif-
ferences

Here, s f denotes beginning of the slope on the convolution
kernel, l f is the length of the slope, and h f is a parameter of
steepness of the slope. All of these parameters are unknown
with prior distribution chosen as

f (h) = tN(0r,1,τ0Ir), (20)
f (si) =U(0,n), ∀i ∈ {1, . . . ,r}, (21)

f (li|si) =U(0,n− si), ∀i ∈ {1, . . . ,r}, (22)

where τ0 is a prior scalar parameter.
We consider model (19) only as our prior knowledge,

from which the real curves can depart. Therefore, (19)
models only mean value of the prior distribution on W :

f (W |Ξ) = tN(MW , In⊗Ξ
−1
W ), ΞW = diag(ξ1, . . . ,ξr),

(23)

f (ξ f ) = Gξ f
(κ f ,0,ν f ,0), (24)

where MW = [mw1, . . . ,mw,r], mw, f =
[0, . . . ,h f , . . .h f ,0 . . .0]. Strictness of the requirement
that W would be close to MW is governed by prior variance
ΞW . The variance is also unknown, hyper-parameterized
by ξ f with scalar prior parameters κ f ,0 and ν f ,0.

3.3 Variational Solution

Joint likelihood for new model is obtained by replacing (7)
in Section 2.1 with prior information (17)–(24). Follow-



ing the Variational Bayes method we identify the following
approximate posterior distributions:

f̃ (A|D,r) = NA(µA,Ω
−1
p ⊗ΦA),

f̃ (g|D,r) = Ng(µg,Σg),

f̃ (vec(W )|D,r) = Nvec(W )(µvec(W ),Σvec(W )),

f̃ (v|D,r) =
r

∏
i=1

Gvi(αi,βi),

f̃ (diag(ΞW )|D,r) =
r

∏
i=1

Gξi(κi,νi),

f̃ (ψ|D,r) = Gψ(ζ ,η),

f̃ (ω|D,r) = Gω (ϑ ,ρ) ,

where diag(.) of matrix argument denotes vector composed
of diagonal entries of the matrix, vec(.) of matrix argument
denotes vector composed of its columns. Shaping parame-
ters are:

ΦA = (ω̂X̂ ′ΩnX + ϒ̂)−1,

µA = Ω
−1
p (ω̂ΩpDΩnX̂)ΦA,

Σg = (ψ̂In +C′
r

∑
i, j=1

Zi, jC)−1,

Zi, j = â′iΩpa j

n−1

∑
k,l=0

∆
′
k∆lΩ̂n ̂(uk+1, jul+1,i),

µg = ΣgC′
r

∑
i=1

((n−1

∑
k=0

∆
′
kûk+1,i

)
ΩnD′Ωpâi

)
,

Σvec(W ) =
(
((Â′ΩpA)′⊗ ω̂C′B̂′ΩnBC)+(Ξ̂W ⊗ In)

)−1
,

µvec(W ) = Σvec(W )

(
ΣABC vec(µ(1)

W )+(Ξ̂W ⊗ In)vec(M̂W )

)
,

ΣABC =
(
(Â′ΩpA)′⊗ ω̂C′B̂′ΩnBC

)
µ
(1)
W = (C′B̂′ΩnBC)−1C′B̂′ΩnD′ΩpÂ(Â′ΩpA)−1,

α = α0 +
p
2

1r,1, β = β0 +
1
2

diag(Â′A),

κ = κ0 +
n
2

1r,1, ν = ν0 +
1
2

diag(Ŵ ′W )

+
1
2

diag(−2Ŵ ′M̂W )+
1
2

diag(M̂′W MW ),

ζ = ζ0 +
n
2
, η = η0 +

1
2

tr(ĝ′g),

ϑ = ϑ0 +
np
2
, ρ = ρ0 +

1
2

tr(ΩpDΩnD′−2ΩpÂX̂ ′ΩnD′)

+
1
2

tr
(

E f (A|D,r)(AX̂ ′ΩnXA′)
)
,

where auxiliary matrix ∆k ∈ Rn×n is defined as (∆k)i, j ={
1 i− j = k
0 otherwise

and a j denotes the jth column of matrix

A.

The required moments are ϒ̂ = diag(α ◦ β−1), ω̂ =
ϑ/ρ , ΞW = diag(κ ◦ ν−1), ψ = ζ/η and the moments of
the truncated normal densities are computed with neglected
covariances using relations in Appendix A.

4 Experiments with clinical data

Performance of the proposed algorithm was compared to
that of the traditional two-step approach on sets of scinti-
graphic images of renal activity. Three different sets were
selected for illustration: one set is physiological (IM3) and
two are harmed (IM1 and IM2), see Table 1.

4.1 Estimation of convolution kernel using FA and
CFA

Assumptions listed in Section 3.2 are valid in the so-called
uptake part of a renal scintigraphic sequence. Results of
analysis of one such sequence are displayed in Figure 3
for two methods: CFA (Section 3) at the top, and the two
step approach using FA (Section 2.1) followed by decon-
volution (Section 2.2) at the bottom. Specifically, time
activity curves corresponding to two factors—tissue back-
ground and blood stream—are displayed in tandem with
their estimated convolution kernel in the same order as in
Figure 1. For both methods, the estimates of the time ac-
tivity curves are displayed in the form of posterior mean
values, i.e. X̂ . Two curves of the convolution kernel for the
CFA correspond to the hyper-parameter MW transformed
into the space of U (dashed line) and posterior estimate of
U (solid line). In the FA case, the convolution kernel is
computed from the blood curve and the tissue background
curve using Fourier transform.

Note that the time activity curve of the background
tissue obtained from the FA method is not smooth, yield-
ing unrealistic convolution kernel. For this particular data
set, the result heavily depends on the chosen number of
factors, r. The presented results are obtained for r = 3. For
higher number of factors, the activity in background tissues
is split into several factors, rendering deconvolution unreli-
able. The CFA method is less sensitive to this choice since
the assumption of common convolution kernel results in
smoother estimates of the curves and the convolution ker-
nels. Consequently, the CFA method aggregates more ac-
tivity in the background factor. This behavior is significant
for analysis of relative function of the kidneys.

4.2 Analysis of relative kidney function

Relative function of kidneys is evaluated using the renal
clearance of a kidney defined by relL = L

R+L × 100, where
L and R denotes intensity of left and right parenchyma.
The analysis is typically performed by an expert using a
set of tools including FA and deconvolution. The first step
of such analysis is to identify the regions of interest for
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Figure 3. Time-activity curves of tissue background, blood stream and their estimated convolution kernel are displayed in the
same order as in Figure 1.

each kidney. In our experiment, rectangular regions of in-
terest were manually positioned around the kidneys and the
proposed algorithm was run in each of them. For compar-
ison, the original factor analysis without the convolution
modeling was also performed. Factors corresponding to the
parenchyma were identified manually and total activity of
the each parenchyma, L and R, was computed. The result-
ing relative function relL was compared to that obtained by
an expert using manually drawn regions-of-interest of the
parenchyma with hand tuned subtraction of the background
tissue activity.

Comparison of all three approaches on three sets of
clinical data is summarized in Table 1. We note that for
healthy organs (IM3), both variants of the factor analysis
provide comparable results which correspond to the expert
chosen values. However, CFA outperforms FA in separa-
tion of the background from the parenchyma in patholog-
ical cases (IM1 and IM2). Detailed analysis of the IM2
data set is displayed in Figure 4. Note that factor images
(variable A) are almost identical for both cases, the main
difference is in the proportion of time activity curves, Fig-
ure 4, middle right and right column. Specifically, the es-
timates of the background tissue activity produced by CFA
are much higher that that of FA, which significantly im-
pacts evaluation of the relative renal clearance.

5 Discussion

The results presented in Section 4 suggest that the fac-
tor analysis with integrated model of convolution of factor
curves has potential to improve estimation of organ activ-
ity. However, the methods is still not ready for routine use.

data set expert FA CFA
IM1 28%–31% 34% 29%
IM2 69%–76% 93% 75%
IM3 48%–51% 48% 49%

Table 1. Comparison of estimates of relative function of the
left kidney obtained by expert solution and semi-automatic
methods.

This may be either due to the use of inappropriate assump-
tions or due to the approximations made in evaluation for
the posterior. We discuss some potential issues and ways
to improve them.

Modeling of the blood curve by increments (16) was
motivated by the assumption that the activity in the blood is
monotonically decreasing in time. However, variants of the
resulting algorithm with enforced positivity of increments
g performed worse that those without this restriction. With-
out enforced positivity of g, the occurrence of negative val-
ues in the estimate was rather sparse. We conjecture that
this is due to the fact that we observe only a fraction of
the blood activity in the selected region of interest. From
this point of view, g is an arbitrary parameter and may be
removed in future versions of the model.

The assumption of common variances of differences
on the whole curve, ξ f in (23), was motivated by compu-
tational reasons. It was found to be rather strict. As a con-
sequence of this assumption the estimates of prior mean
values of the convolution kernels were sharply peaked and
unrealistic. More detailed modeling of variances Ξ in (12)
would be necessary for improvement.
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Figure 4. Relative function of kidneys for data set IM2 obtained from CFA (top row) and FA (bottom row). Left: estimates
of the background tissue activity. Middle-left: estimates of the parenchyma activity. Middle: thresholded pictures of the
parenchyma used for evaluation of the relative function. Middle-right: separation of total activity in the left region into those
of background tissue and parenchyma. Right: separation of total activity in the right region into those of background tissue and
parenchyma.

Assumptions similar to (19) can be used for automatic
estimation of regions of interest in the factor images. Pre-
liminary experiments reveal the same need for finer model-
ing of its prior covariance that in the case of Ξ. Success in
this direction would allow completely automatic selection
of regions of interest without the need for manual selection
of left and right kidney.

6 Conclusion

A new mathematical model for functional analysis of dy-
namic scintigraphic images is proposed. The key nov-
elty of the model is parametrization of the factor curves
by convolution of a common input activity with organ
specific convolution kernels. The convolution kernels are
restricted according to physiological assumptions. Esti-
mates of the model parameters are obtained using the Vari-
ational Bayesian estimation procedure. The methodology
is flexible enough to allow addition of other physiologi-
cally meaningful assumptions and obtain different estima-
tion algorithms. The model was tested on clinical data from
renal scintigraphy where improvement over previous meth-
ods was demonstrated especially on demanding data sets.
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A Moments of truncated Normal Distribu-
tion

Scalar truncated normal distribution

tNx(x|µ,r) = α
√

2exp(−(x−µ)2/(2r)), x > 0, (25)

has moments

x̂ = µ + rα
√

2exp(−µ
2/(2r)), x̂2 = r+µ x̂,

where α−1 =
√

πr(1− erf(−µ/
√

2r)) and erf is the error
function.
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